Crossville Medical Office Building # Water Quality Calculations Area 1 | Date Prepared: | | 2/1/2012 | | |--|--|------------------------|-------------------------| | Area =
Area Impervious =
Area Pervious = | | 0.565
0.315
0.25 | Acres
Acres
Acres | | | | | | #### **WATER QUALITY VOLUME ANALYSIS** | $H_V = 0.05 + 0.009(1) =$ | 0.55 | |----------------------------|--------------------------------------| | I = % of Impervious Area = | 55.75% | | | $WQ_V = \frac{1.2 R_V A}{1.2 R_V A}$ | | • GV | 12 | - | | | | | |-------|-----|-------|------|----|-------|------------| | VQv = | 1,2 | 0.552 | 0.57 | 12 | 0.03 | Acre-Ft | | | | | | | 1,358 | Cubic Feet | area from grading plan #### **BIORETENTION CALCULATIONS** A_f Basin A (sf)= 320 calculated value Provided Surface Area (sf)= 482 area from grading plan 2/1/2012 ### Area 2 Date Prepared: | Area = | | 1.152 | Acres | | | | | |-------------------------------|--------------------|----------------------|-------|------|----|-------|------------| | Area Impervious = | | 0.69 | Acres | | | | | | Area Pervious = | | 0.462 | Acres | | • | | | | WATER QUALITY VOLUME ANALYSIS | | | | | | | | | $R_V = 0.05 + 0.009(1) =$ | | 0.59 | • | | | | | | I = % of Impervious Area = | | 59.90% | | | | | | | | WQ _v =_ | 1.2 R _V A | | | | | | | | VV GV = | 12 | | | | | | | · | WQv = | 1.2 | 0.589 | 1.15 | 12 | 0.07 | Acre-Ft | | | | | | | | 2,956 | Cubic Feet | #### BIORETENTION CALCULATIONS | DIGITE TERRIOR GALGGEATIONS | | | | | |---|--|--|--|--| | WQv = design storage (cf) = 2,956
$d_{t=}$ filler bed depth (ft) = 4 | (from calculations above)
specified in detail | | | | | k = coefficient of permeability of filter meadia (ft/day) = 2
$h_f = average$ height of water above filter bed (ft) = 0.25 | (from Georgia Erosion Control Manual for Madison Soil)
user input of 3" which is half the ponding depth | | | | | t _i = design filter bed draining time (days) = 2 | user input | | | | | A_i (sqft) = surface area of bioretention = $(WQv)(d_i)/[k(h_i+d_i)(t_i)]$ | • | | | | | A _I Basin A (sf)= 696 | calculated value | | | | Provided Surface Area (sf)= 778